http://dlib.net/image_ex.cpp.html
위 예제를 이용해, Dlib + Visual Studio 2010 연동 방법을 정리해 놓을까 한다.
bmp 영상 불러와서 에지 검출하는 간단한 예제이다.
1. 먼저 Visual Studio를 열고, Win32 콘솔 응용 프로그램을 선택하고 새 프로젝트를 만들어 준다.
2. 프로젝트 → 속성 → VC++ 디렉터리 → 라이브러리 디렉터리
위 경로에 "C:\dlib-18.18\build\dlib_build\Release" 추가.
이 폴더에는 앞서 Dlib를 컴파일 하면서 생성된 dlib.lib 파일이 있는 경로이다.
3.
프로젝트 → 속성 → 링커 → 입력 → 추가 종속성
여기에 dlib.lib를 입력해준다.
그리고 확인버튼!
4. 예제소스를 입력해보자.
#include <\dlib-18.18\dlib\gui_widgets.h>
#include <\dlib-18.18\dlib\image_io.h>
#include <\dlib-18.18\dlib\image_transforms.h>
#include <fstream>
using namespace std;
using namespace dlib;
int _tmain(int argc, _TCHAR* argv[])
{
// make sure the user entered an argument to this program
// Here we declare an image object that can store rgb_pixels. Note that in
// dlib there is no explicit image object, just a 2D array and
// various pixel types.
array2d<rgb_pixel> img;
// Now load the image file into our image. If something is wrong then
// load_image() will throw an exception. Also, if you linked with libpng
// and libjpeg then load_image() can load PNG and JPEG files in addition
// to BMP files.
load_image(img, "test.bmp");
// Now let's use some image functions. First let's blur the image a little.
array2d<unsigned char> blurred_img;
gaussian_blur(img, blurred_img);
// Now find the horizontal and vertical gradient images.
array2d<short> horz_gradient, vert_gradient;
array2d<unsigned char> edge_image;
sobel_edge_detector(blurred_img, horz_gradient, vert_gradient);
// now we do the non-maximum edge suppression step so that our edges are nice and thin
suppress_non_maximum_edges(horz_gradient, vert_gradient, edge_image);
// Now we would like to see what our images look like. So let's use a
// window to display them on the screen. (Note that you can zoom into
// the window by holding CTRL and scrolling the mouse wheel)
image_window my_window(edge_image, "Normal Edge Image");
// We can also easily display the edge_image as a heatmap or using the jet color
// scheme like so.
image_window win_hot(heatmap(edge_image));
image_window win_jet(jet(edge_image));
// also make a window to display the original image
image_window my_window2(img, "Original Image");
// Sometimes you want to get input from the user about which pixels are important
// for some task. You can do this easily by trapping user clicks as shown below.
// This loop executes every time the user double clicks on some image pixel and it
// will terminate once the user closes the window.
point p;
while (my_window.get_next_double_click(p))
{
cout << "User double clicked on pixel: " << p << endl;
cout << "edge pixel value at this location is: " << (int)edge_image[p.y()][p.x()] << endl;
}
// wait until the user closes the windows before we let the program
// terminate.
win_hot.wait_until_closed();
my_window2.wait_until_closed();
// Finally, note that you can access the elements of an image using the normal [row][column]
// operator like so:
cout << horz_gradient[0][3] << endl;
cout << "number of rows in image: " << horz_gradient.nr() << endl;
cout << "number of columns in image: " << horz_gradient.nc() << endl;
return 0;
}
5. 결과 영상
'과거자료 > DLIB' 카테고리의 다른 글
DLIB C++ Library, CMake를 이용한 Dlib 컴파일 (4) | 2016.06.09 |
---|